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Abstract: This paper conducts an in - depth study and generalization of the 15 - puzzle using group 
- theoretic methods. Starting with two - dimensional puzzles, relevant concepts are defined in detail, 
and the solvability of Lloyd’s Puzzle, n×n, and n×m puzzles is studied by constructing permutations. 
The research is extended to three - dimensions, where multiple puzzle types are defined, and the 
solvability conditions of 𝑛𝑛3 , 𝑛𝑛2𝑚𝑚 , and nmk puzzles are obtained. Further generalization to d - 
dimensions is carried out, with the definitions and solvability conclusions of 𝑛𝑛𝑑𝑑 and s -sliced 𝑛𝑛𝑑𝑑 
puzzles given. The characteristics of puzzles with multiple empty blocks and generalized initial 
configurations are also explored. The research results deepen the understanding of the 15 - puzzle 
and its extended forms, providing a theoretical basis for subsequent related research.  

1. Introduction 
The "15 - puzzle" is a captivating combinatorial puzzle with a rich historical backdrop. Dating 

back to 1874, it was ingeniously invented by Noyes Chapman and swiftly gained remarkable 
popularity during the 1880s. This simple yet challenging puzzle consists of 15 numbered square 
blocks placed in a 4x4 grid, with one empty space, inviting players to arrange the blocks in 
ascending order through a series of sliding moves. Subsequently, Sam Lloyd added an exciting twist 
to the puzzle - solving landscape by offering a substantial $1000 prize to anyone who could crack 
his unique version, known as Lloyd’s Puzzle. However, in 1879, Johnson and Story [1] 
demonstrated the futility of this pursuit, proving that Lloyd’s Puzzle was, in fact, unsolvable. This 
revelation did not dampen the enthusiasm of the academic community; instead, it sparked a flurry of 
research endeavors aimed at further exploring the 15 - puzzle and its generalizations. Over the years, 
scholars from diverse fields have employed an array of mathematical tools to delve into the 
properties of these puzzles. [2] Archer, in 1999 [3], utilized graph theory to analyze the puzzle's 
state - space structure, representing each configuration as a vertex and each legal move as an edge 
in a graph. This approach provided valuable insights into the connectivity and reachability of 
different puzzle states. [4] In 2019, Chu and Hough brought a probabilistic perspective to the table, 
exploring the likelihood of reaching a solved state from a given initial configuration. Their work 
shed light on the statistical behavior of the puzzle - solving process. More recently, in 2023, Beyer, 
Mereta, Roldan, and Voran presented a tangential solution using topology. They exploited 
topological concepts to classify and analyze puzzle configurations, uncovering deep - seated 
relationships between different states. The first two studies were limited to generalizing the puzzle 
to n × n grids, while the latter focused on 2n - puzzles. In this paper, we embark on a novel 
exploration by adopting a group - theoretic approach. Our aim is to push the boundaries of existing 
research by generalizing the puzzle to d dimensions. This generalization not only encompasses 
puzzles with equal - side lengths but also extends to those with unequal side lengths. Additionally, 
we delve into puzzles containing multiple empty blocks, a hitherto less - explored aspect of the 15 - 
puzzle family. By doing so, we seek to uncover new theoretical insights and establish a more 
comprehensive understanding of the fundamental properties of these puzzles. 

 

2025 8th International Industrial Informatics and Computer Engineering Conference (IIICEC 2025)

Copyright © (2025) Francis Academic Press, UK DOI: 10.25236/iiicec.2025.022170



2. Proofs for 2 - Dimensional Puzzles 
2.1 2-dimensional Puzzles 

 
Figure 1: A Sample Puzzle 

In this paper, we denote a block by simply refering to its value; we denote a position by 
saying ”position”, followed by the value of the block that occupies that place in the solved state. For 
example, in Fig 1, we say that 6 is position 11. We will refer to puzzles by the lengths of the edges 
of the puzzle; we will also refer to two dimensional puzzles with explicit ”×” for both numerical 
and algebraic edge lengths, but omit ”×” when referring to higher dimensional puzzles with 
algebraic edge length. For example, a 2-dimensional puzzle with edge lengths 10 and 33 will be 
referred to as a 10×33 puzzle, and a 4-dimensional puzzle with edge lengths 4, 7, 9 and 11 will be 
referred to as a 4 × 7 × 9 × 11 puzzle; a 2-dimensional puzzle with edge lengths a and b will be 
referred to as a a × b puzzle ,and a 4-dimensional puzzle with edge lengths a, b, c and d will be 
referred to as a abcd puzzle. 

2.2 Lloyd’s Puzzle and n × n Puzzles 
To solve the puzzle is to make the blocks be in the correct position. We can take the solved 

configuration of the puzzle, and the initial configuration of the puzzle, and construct a permutation. 
For example with the puzzle in Figure 2, we obtain relationship 1  

 
Figure 2: An random configuration 

𝐴𝐴 = �1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
14 7 5 10 12 3 15 4 1 6 2 13 9 11 8 16� 

A = (1 14 11 2 7 15 8 4 10 6 3 5 12 13 9) (16)                                       (1) 
And with the puzzle in the Figure 3 below, we obtain relationship 2  

 
Figure 3: Another random configuration 

𝐴𝐴 = �1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
15 1 12 5 7 11 4 8 10 6 3 14 9 2 13 16� 

A = (1 15 13 9 10 6 11 3 12 14 2) (4 5 7) (8) (16)                                   (2) 
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The benefit of this process is that it shows exactly what transpositions must take place for the 
initial configuration to be turned into the solved configuration, or what transpositions are required 
to solve the puzzle. However, observing the mechanics of the puzzle, we find that generally, two 
blocks cannot simply transpose. How a block actually moves is by sliding the block into the empty 
tile, which has the value 16. That is to say that an operation on the board to turn one configuration 
to another is a transposition with 16, or a composition of transpositions with 16.  

Theorem 1. A configuration is a group under a move.  
Proof. Associativity: (a b) (b c) (c d) = (a b c) (c d) = (a b) (b c d) = (a b c d) ; Identity: a move 

with itself; Inverse: the inverse of (a b) is (b a).  
Every transposition in the permutation is, in this way, mediated by 16. So to see if these 

transpositions are possible, we can focus on 16. to see if the transpositions are possible, is the same 
as checking if the puzzle is solvable, since if the transpositions are not possible, the blocks cannot 
be moved into the correct places.  

Lloyd’s rendition of the puzzle has the 14 and 15 blocks transposed, while keeping all the other 
blocks in their solved state position. For Lloyd’s question, where we get the permutation below.  

𝐴𝐴 = �1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16� 

A = (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14 15) (16)                  (3) 
We get a single transposition of  (14 15)                                            (4) 

We now examine 16. 16 stays in the same place in the initial configuration (which is the 
permutation above in 3), and in the solved configuration. Hence, 16 must have been moved up and 
down, righ and left the same amount of times, which is an even number of transpositions. However, 
with the configuration above, an odd number of transpositions must occur in order for it to be 
solved. This means that it is impossible for this configuration to be changed into the solved 
configuration, or, this configuration is not solvable. Similarly, all puzzles that have this 
contradiction are not solvable. Thus we claim  

Lemma 1. If 16 is in the same position at the start and in the end, there must be an even number 
of transpositions for the puzzle to be solvable.  

However, counting transpositions from permutations is generally very cumbersome and 
inefficient, so we shall examine the number of permutations.  

For a 4 × 4 puzzle, in order to get an even number of transpositions, one would need an even 
number of permutations. In the solved state, there are 16 permutations, which is an even number. 
For each 2 transpositions added, one could either combine 3 permutations to one, for example  

(6) (7) (8) → (6 7 8)                                                         (5) 
Or combine 4 permutations to 2,  

(6) (7) (8) (9) → (6 7) (8 9)                                                 (6) 
Or more generally  

(3 4 6) (2 8) (1) → (1 2 3 4 6 8)                                              (7) 
(3 4 6) (2 8) (1) (9 11 12) → (1 9 11 12) (2 3 4 6 8)                             (8) 

Both of which results in an even change in permutations.  
Lemma 2. Combining any 3 permutations to 1, or combing any 4 permutations  
To 2 will always increase the number of transposition by 2.  
Proof. A permutation with x elements has x − 1 transpositions. Consider 3 permutations with a, b 

and c elements respectively. The total number of transpositions of the three permutations is thus 𝑛𝑛1 
= a+b+c−3. When we combine the 3 permutations, we obtain a single permuation that has a + b + c 
elements. This new permutations thus has 𝑛𝑛2 = a+b+c−1 transpositions. The change in the number 
of transpostions 𝑛𝑛2−𝑛𝑛1= 2. Similarly, consider 4 permutations A, B, C and D with a, b, c and d 
elements respectively. The total number of the four transpositions of the permutations is 𝑛𝑛1 = a + b 
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+ c + d − 4. Without the 4loss of generality, suppose we combine A and B together, and combine C 
and D together. When we combine the four permuations, we obtain 2 permuations: one with a + b 
elements, and one with c + d elements. They have a + b − 1 and c + d − 1 transpositions 
respectively, resulting in the total number of transpositions n2 = a + b + c + d − 2. The change in 
the number of transpositions 𝑛𝑛2−𝑛𝑛1= 2. And thus completing the proof.  

Theorem 2. An even change in the number of transpositions in a permutation group results in an 
even change in the number of permutations, and thus does not change the parity of the number of 
the permutations in the group.  

This, combined with the even number of permutations initially, gives us an even number for the 
number of transpositions. From here, it is natural to attempt to extend this observation to n × n 
puzzles. All n × n puzzles are fundamentally the same  

Lemma 3. If n 2 is in the same position at the start and in the end, there must be an even number 
of transpositions for the puzzle to be solvable.  

According to previous logic. Here, we can categorise n × n puzzles into 2 subcategories, namely, 
where n is even, and where n is odd. Previously, we have discovered that for each 2 transpositions 
added, the parity of the number of permutations does not change; thus, the parity of the required 
number of permutations is entirely dependent on the parity of the number of permutations in the 
solved state. For n is even, it is even; and for n is odd, it is odd. Therefore, for n is even, the 
required parity of the number of permutations for the puzzle to be solvable is even, and for n is odd, 
it is then conversely odd. The examination of regular puzzles is now complete. But we can further 
generalise by noticing that n × n is in fact, a special case of n × m, where n = m.  

2.3 n × m Puzzles 
For the sake of simplicity, we shall assume that n ≥ m. A n × m puzzle has n rows and m 

columns, where we only have to arrange n × m − 1 blocks in a similar fashion as the n × n puzzle. 
In fact, we can view the n × m puzzle as a section of n × n puzzle, or a sliced version along one 
direction. We can complement the n × m, to a n × n; not only physically as an aid in conception, 
but also numerically. When we attempt to solve a, for example, 4 × 4 puzzle, we first clear the first 
two rows, and then try to rearrange the lower 2 rows. This ”rearranging the lower 2 rows” is 
effectively solving a 4 × 2 puzzle. This way, we can consider the n × m puzzle as having n − m 
rows above it that are already solved. This means that we can complement the puzzle numerically, 
by considering the above n − m rows as having a n(n − m) blocks that already in 5the correct 
position, thus having n(n − m) permutations already. The benefit of complementing the puzzle like 
this is that we can use our conclusions of the n × n puzzles. Thus we can define a slicing, a slice 
size, a sliced configuration, a complementary configuration and a complemented configuration.  

Lemma 4. A sliced configuration is a partially solved complemented configuration. It has 
additional permutations without transpositions of the size of the complementary configuration.  

The total number of permutations of a complemented puzzle is simply the number of existing 
permutations (permutations of the actual puzzle), together with the number of permutations in the 
complementary part.  

t = c + p                                                                    (9) 
Where t is the number of permutations of the total, complemented puzzle, c is the number of 

permutations of the complementary part, p is the number of permutations of the actual puzzle. We 
are interested in the parity if all of these, since the parity determines if the puzzle is solvable or not. 
We can determine the required parity of t by n. It follows that  

t ≡ c + p (mod 2)                                                         (10) 
We can also determine the parity of c by n and m, here given by c = n(n − m), so we can derive 

the equation that gives must be hold if the puzzle is solvable:  
p ≡ t − c (mod 2)                                                        (11) 

We shall omit (mod 2) in the future unless when it does not cause confusion. There are 
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immediately four cases to this problem, we show these in Table 1 Now the examination of all 2-
dimensional puzzles has been completed.  

Table 1: All the Cases 

Case n m t c p 
1 0 0 0 0 0 
2 0 1 0 0 0 
3 1 0 1 1 0 
4 1 1 1 0 1 

3. Proofs for 3 - Dimensional Puzzles 
3.1 3 - Dimensional Puzzles 

3-dimensional puzzles can be conceived of as a generalisation of the 2-dimensional puzzle. 
However, there are no existing formal construction or definition of such a 3-dimensional puzzle.  

Analogous to the treatment of the 2-dimensional puzzles, we can construct a permutation group 
under a move, and examine the parity of transpositions and permutations. 

Similarly, if we keep 𝑛𝑛3 in the same position at the start and in the end, 𝑛𝑛3must have been 
transposed up and down the same number of times, and similarly left and right, to and fro. This 
means that it has been transposed an even number of times. Thus, an even number of transpositions 
is required for the puzzle to be solvable, similar to the result we obtained in lemma 1.  

Lemma 5. If n 3 is in the same position at the start and in the end, there must be an even number 
of transpositions for the puzzle to be solvable.  

The parity of the number of solved-state permutations is given by x = 𝑛𝑛3(mod 2). According to 
Theorem 2, for every two transpositions added, the parity of the number of permutatations does not 
change. Thus parity of the number of permutations needed for the puzzle to be solvable is entirely 
dependent on n. Namely, if n is even, then the number must be even; if n is odd, then the number 
must be odd.  

3.2 n2m and nmk Puzzles 

We can make a generalisation from 𝑛𝑛3  puzzles to 𝑛𝑛2m puzzles. Suppose n > m. The 𝑛𝑛2m 
configuration is a sliced configuration of the 𝑛𝑛3 puzzle, with slice size n − m. This means that the 
complementary configuration is a n(n − m) configuration. According to lemma 4, we know that it 
has an additional 𝑛𝑛2 (n − m) permutations. There are of course 4 cases again, as shown in table 2.  

Table 2: All the Cases 

Case n m t c p 
1 0 0 0 0 0 
2 0 1 0 0 0 
3 1 0 1 1 0 
4 1 1 1 0 1 

Where t = 𝑛𝑛3 , c = 𝑛𝑛2 (n − m). The requirements of solvability are given in the p column in table 
2.  

For a 2-dimension puzzle, there is only one possible directions of slicing. However, for a 3-
dimensional puzzle, there are two possible direction of slicing. The 8nmk puzzle is a 𝑛𝑛3 puzzle 
sliced in two directions, or a 𝑛𝑛2m puzzle sliced in the other direction. Thus we can treat the nmk 
puzzle as the sliced configuration, and the 𝑛𝑛2m as the complemented configuration, with slice size 
n−k. The benefit of this conception is that we can use our conclusions about the 𝑛𝑛2m puzzle as aid; 
however, we can also directly use our conclusions from the 𝑛𝑛3 puzzle. We can obtain the following 
tables.  

We can immediately see that although t and c in tables 3 and 4 are different, the results they gave 
for p are identical. Now we have completed the examination of all 3-dimensional puzzles.  
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Table 3: All the Case 

Case n m k t c p 
1 0 0 0 0 0 0 
2 0 1 0 0 0 0 
3 1 0 0 0 0 0 
4 1 1 0 1 1 0 
1 0 0 1 0 0 0 
2 0 1 1 0 0 0 
3 1 0 1 0 0 0 
4 1 1 1 1 0 1 

Where t = 𝑛𝑛2m, c = nm(n − k).  
Table 4: All the Case 

Case n m k t c p 
1 0 0 0 0 0 0 
2 0 1 0 0 0 0 
3 1 0 0 1 1 0 
4 1 1 0 1 1 0 
1 0 0 1 0 0 0 
2 0 1 1 0 0 0 
3 1 0 1 1 1 0 
4 1 1 1 1 0 1 

Where t = 𝑛𝑛3, c = n 2 (n − m) + nm(n − k). 

4. Proofs for n - Dimensional Puzzles 
4.1 nd Puzzles 

The d-dimensional puzzles are harder to conceive, but we can define a ndimensional puzzle in a 
the same fashion as the 3-dimensional puzzle.  

Previously, we have made the generalisation from 𝑛𝑛2 to n × m, and from 𝑛𝑛3 to 𝑛𝑛2m and further 
to nmk; we treated the 𝑛𝑛2 puzzle as a special case of  n × m when n = m, and the 𝑛𝑛3 puzzle as a 
special case or nmk when n = m = k, as they are the more general case. Thus, we will directly 
examine the generalised version of n-dimensional puzzles.  

4.2 s-sliced nd Puzzles 
We have established lemmas 3 and 5. In the more general case, where we have  
One empty block and a d dimensional puzzle, we have the following  
Theorem 3. If the configuration only has one empty block, and if the block should be in the same 

position in the initial configuration and in the solved configuration, an even number of 
transpositions is required for the puzzle to be solvable.  

We now investigate the parity of the number of permutations. However, with a s-sliced 𝑛𝑛𝑑𝑑 
puzzle, there are a total of 2𝑠𝑠+1 cases, it is very inefficient to exhaust all the cases in a table. Notice, 
for the n × m, the 𝑛𝑛2m and the nmk puzzles, all the combinations of values of n, m, and k lead to p = 
0, except for one case; specifically, when n = m = 1, or n = m = k = 1. In that case, p = 1. In other 
words, only when all the edge lengths are odd, p is required to be odd. If this were to be true for d-
dimensions, it would tremendously simplify our process of determining the solvablity of a puzzle.  

Theorem 4. For any s-sliced puzzle with slice sn having size mn, if and only if n = m1 = m2 
= · · · = ms = 1, p = 1 is required for the puzzle to be solvable; otherwise, p = 0 is required.  
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5. Conclusion 
This research uses group theory to deeply analyze the 15-puzzle and extends it to the d - 

dimensional space. It comprehensively explores the characteristics and solvability conditions of 
puzzles with different dimensions, side lengths, and numbers of empty blocks, achieving a series of 
key results. In the study of two - dimensional puzzles, a permutation relationship from the initial 
state to the target state is constructed, clarifying the crucial role of the empty block in the 
movement.Through the analysis of Lloyd’s Puzzle, it is found that if the initial and end positions of 
the empty block are the same, a necessary condition for the puzzle to be solvable is that the number 
of transpositions is even. This conclusion is further extended to n×n puzzles, and the parity of the 
number of permutations required for the puzzle to be solvable is determined according to the parity 
of n. For n×m puzzles, they are regarded as a part of n×n puzzles. By means of complementation, a 
formula for the total number of permutations is obtained, and the conditions for the puzzle to be 
solvable are determined by dividing into different cases. In the research of three - dimensional 
puzzles, multiple puzzle types are defined, and the n³ puzzle is defined as a specific stacking form. 
Similar to the analysis of two - dimensional puzzles, if the position of n³ is the same at the start and 
the end, an even number of transpositions is required for the puzzle to be solvable, and the parity of 
the number of permutations when the puzzle is solvable depends on the parity of n. For n²m and 
nmk puzzles, by using the concepts of slicing and complementary configuration, corresponding 
solvability conclusions are obtained, and the results of p in the solvability conditions are consistent 
under different representation methods. In the research of d - dimensional puzzles, the n^d puzzle 
and the s - sliced n^d puzzle are defined. It is proven that when there is a single empty block and its 
position remains unchanged, an even number of transpositions is required for the puzzle to be 
solvable, and a concise judgment condition for the solvability of the s - sliced puzzle is given: if and 
only if n = m₁ = m₂ = … = mₛ = 1, p = 1 is required for the puzzle to be solvable; otherwise, p = 0. 
For puzzles with multiple empty blocks, the conjecture that “puzzles with more than one empty 
block are always solvable” is proposed and proven. In the research of puzzles with generalized 
initial configurations, the equivalence relationships of regular puzzles and proper incomplete 
puzzles are clarified, and the conclusion that the parity of the number of transpositions required 
must be the same as the parity of the number of transpositions of the empty block is obtained. Based 
on this, the required values of p for the solvability of s - sliced puzzles under different conditions 
are given. The results of this research not only deepen the theoretical understanding of the 15 - 
puzzle and its extended forms but also lay a solid foundation for subsequent research. In the future, 
puzzles with more constraints or rules can be explored to study their solvability and solution 
algorithms; parallel solution algorithms can be designed to improve the solution efficiency; and 
machine learning methods can be combined to predict the solvability of puzzles or optimize the 
solution strategy, further expanding the research boundaries of this field. 
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